

EXPRESSWEB FRAMEWORK - INTRODUCTION 2

Developer Express - ExpressWeb Framework - Introduction

Contents
Purpose of this Article
Introduction
EWF Components

The Menu Control
The Web Style Controller
The Web Check Box
The Web Popup Menu and Web Label
The Web DB DataSource
The Web DB Data Navigator and Web DB Grid

Client Side HTML
The TcxHTMLLabelElement and TcxHTMLButtonElement

HTML Tables
Server Side Scripting
Using existing HTML as a Template
Appendix

Using the Web App Debugger
Deployment

Purpose of this Article
This white paper is part of a set providing detailed information about the ExpressWeb Framework technology from Developer
Express. It provides an introduction to the technology by means of a simple tutorial demonstrating how to create a web
application.

In order to do the tutorial yourself, you need to have a basic familiarity with Delphi and the following products installed:
• Delphi 6 OR Delphi 7 (Professional or Enterprise)
• ExpressWeb Framework V1.6 or greater

Introduction
Developer Express's ExpressWeb Framework (EWF) enables the creation of web applications. A web application is one that
runs within a web browser such as Internet Explorer, Netscape Navigator and other similar platforms. This tutorial covers:

• Creating an EWF application • Database access
• Running via Web App Debugger (WAD) • Data Navigator and Grid controls
• Comparison of WAD and ISAPI applications • Other data controls
• Form/HTML Result/Preview modes • EWF HTML Elements
• EWF Components • HTML editing
• Creating and using a WebMenu • HTML Tag display in Object Inspector
• Adding web pages to the application • HTML table editing
• Styles via the WebStyleController • Client and server side scripting
• Popup Menus • Using existing HTML as a Template

Note that each of the above items is built on the preceding ones and it is recommended that you read everything first.

First we need to create an EWF application. Start Delphi and select File | New | Other. Choose the ExpressWeb Framework page:

EXPRESSWEB FRAMEWORK - INTRODUCTION 3

Select 'Web Application' (the default) and click [OK]. You'll see the 'New EWF Application' modal dialog box.

For the 'Server Type', select 'Web App Debugger executable'. Web App Debugger executables are designed to make debugging
easier by creating executables with the server built-in. For 'ClassName' enter 'EWFIntroApp'. The ClassName field is used to
identify the Web App Debugger executable so that it can be distinguished from other Web App Debugger executables. Set
'Create module' entry to 'Page Module' (the default). Then click [OK] to generate the application.

Three Units will be created:

• Unit 1 is the main form for the Web App Debugger (WAD) executable. This form has no real purpose in a delivered web
application. It is there only as a part of the WAD.

• Unit 2 is the Home Data Module for the application and acts like the "brain". This module is used to set application-wide
settings. You would use this in the same way as you might a Data Module in a standard Delphi application. You can also use
the DefaultPage property to declare the home page for the application.

• Unit 3 is the web applications main form, the initial home page. This form has an HTML document, a standard Delphi PAS file,
and a standard Delphi DFM file.

Rename project parts as follows:

• Project Group : EWFIntro
• Project1 : EWFIntro
• Unit1 : EWFIntroMain
• Unit2 : EWFIntroData
• Unit3 : EWFIntroHome

When you have done this, your Project Manager (View | Project Manager or Ctrl+Alt+F11) should look something like this:

Select the EWFIntroHome unit. In Delphi's VCL, select the [EWF Controls]
tab, then place a cxWebLabel on the form in the usual way. Using the object
inspector, set the 'Caption' property to 'Hello World!'

Press F9 to run the application in your default browser. You have completed
your first web application using EWF. (Note: If this is the first time that you
have run an application under the WAD, you may find that your app errors on
start. If it does, just shut down the Web App Debugger and re-start your
application).

Notice that when your application runs two items are shown: The default
browser and the main window form for your application. The latter is used to
terminate your web application but is otherwise of little use. Therefore, at
design time make the form as small as possible and place it out of the way.

Review the EWFIntroHome form. It differs from the standard Delphi design
time form in a few ways. One way is the buttons along the base labeled
'Form', 'HTML Result' and 'Preview'.

EXPRESSWEB FRAMEWORK - INTRODUCTION 4

The 'Form' button (selected by default) enables you to place components on the form and manipulate them like any other Delphi
component. The data from this view is written to a file called EWFIntroHome.html. This file contains some HTML code with EWF
meta tags.

The 'HTML Result' button will show you the HTML code produced as a result of your design. To do this, it expands the ewf tags
(special HTML tags, prefixed with "ewf:") held in the EWFIntroHome.html file.

The 'Preview' button will show an HTML preview of your design. Server side code (discussed shortly), is not executed. The three
views are shown below.

Examine the Project Manager. Under EWFIntroHome, it shows 3 units: EWFIntroHome.pas (a standard pascal unit),
cxWebPageModule3 (a standard Delphi form unit) and EWFIntroHome.html, the EWF HTML template unit. When opened in
Delphi, the file looks like the following figure:

Compare this with the 'HTML Result' view to see how EWF meta tags are expanded. Note that the 'HTML Result' view is read
only. To actually edit the HTML, you would need to edit the EWFIntroHome.html file.

Another way that the EWFIntroHome form differs from the standard Delphi design time form, is the WYSIWYG editing toolbar.
You use this in conjunction with components that you place on the form.

EXPRESSWEB FRAMEWORK - INTRODUCTION 5

EWF Components
Four pages of components are supplied by default:

EWF Controls: standard Delphi non-data components (server side) that provide normal Delphi event handlers (Object Pascal)

EWF Data Controls: standard Delphi data-aware components

EWF Components: non-visual controls and data sources

EWF HTML Elements: for adding client side HTML code to the html file.

To continue with the tutorial, select the 'Hello World' label and delete it.

Add two new pages to the EWF application by clicking on File | New | Other. Select the ExpressWeb Framework page and select
'Web Page Module'. Do this twice and name the units EWFIntroExample1 and EWFIntroExample2 respectively.

Also, change the form names for EWFIntroHome, EWFIntroExample1 and EWFIntroExample2 to Home, Example1 and
Example2 respectively. This is important as we'll be using these names to access those forms from the menu.

EXPRESSWEB FRAMEWORK - INTRODUCTION 6

The Menu Control

Select the 'EWF Controls' page on the Component Palette and place a TcxWebMainMenu on to the Home form. Note that the
menu component has an EWF flag attached to it. This indicates that it is an EWF component rather than an HTML element.
Right click on the menu and select 'Menu Editor'.

Enter some items and sub-items to create a menu system. To follow the tutorial, match the entries in the screenshot below. To
change the menu's caption, enter the value into the Caption property in the Object Inspector. To change the width, enter a value
for that property also. Sub-items inherit their width from the item above them.

To make the menu system useful, we need to enter an URL for each menu option. This
URL can be in standard HTML format (ie: http://www.devexpress.com), or you can
simply enter the page name for a page in your EWF application (ie: Example2).

Revisit the menu items and populate the URL -> Href property as follows:

Menu Item URL->HREF Value
Example 1 Example1
Example 2 Example2
ExpressQuantumGrid http://www.devexpress.com/?section=/Products/VCL/ExQuantumGrid
ExpressBars http://www.devexpress.com/?section=/Products/VCL/ExBars
ExpressMasterView http://www.devexpress.com/?section=/Products/VCL/ExMasterView
ExpressNavBar http://www.devexpress.com/?section=/Products/VCL/ExNavBar
ExpressLayout Control http://www.devexpress.com/?section=/Products/VCL/ExLayoutControl
ExpressPrinting System http://www.devexpress.com/?section=/Products/VCL/ExPrintingSystem
Website http://www.devexpress.com
Best Practices http://www.devexpress.com/?section=/BestPractices
EWF Newsgroup news://news.devexpress.com/devexpress.public.vcl.expresswebframework
Info mailto://info@devexpress.com
Sales mailto://clientservices@devexpress.com
Support mailto://support@devexpress.com
Website http://www.borland.com
Community http://community.borland.com

Note that all that is needed to refer to a page within the application is the name of the form for that page. (Tip: Under the WAD,
the address to these pages must appear in the search path for the WAD so that it can find and load them correctly)

EXPRESSWEB FRAMEWORK - INTRODUCTION 7

The Web Style Controller

Web developers will be aware of Cascading Style Sheets (CSS). CSS enables a unified look and feel to be applied to a site.
Developer Express users will be aware of Style Controllers. The Web Style Controllers allow a unified look and feel to be applied
across EWF Controls used in an ExpressWeb application.

The TcxWebStyleController component (found on the EWF tab in the Component Palette) is a non-visual component. It can be
placed in one of three locations:

1. On the form (in the special non-visual area just above the bottom status bar)
2. On the EWFIntroData WebHomeDataModule
3. On a new WebDataModule

The third option is recommended for the re-use of data between different applications (i.e. by adding the module to the
Repository). For this tutorial, use the second option and add the component to the EWFIntroData unit, to allow the styles to be
available to all the pages in the application:

To make it available to all the pages in the application, switch to each page and use Delphi's menu: File | Use Unit.
To add styles to the cxWebStyleController, double click on it or right click and select 'Styles Editor'. Alternatively, rather than enter a
lot of items, you may want to copy a style controller from one of the EWF demos. This tutorial uses the style controller found in
the ExpressSupportForum demo, the HomeDM unit.

Next, select the Home page for the application and the menu on it. Set the Styles->Default and Styles->Hover properties as
shown.

EXPRESSWEB FRAMEWORK - INTRODUCTION 8

The Web Check Box

• Drop a TcxWebCheckBox instance on to the Home form (EWF Controls Page)
• Set cxWebCheckBox1.Caption to 'Horizontal Menu'
• Set cxWebCheckBox1.Checked to True
• Set cxWebCheckBox1.Styles.Default to cxWebHomeDataModule2.ButtonStyle
• Set cxWebCheckBox1.Styles.Hover to cxWebHomeDataModule2.ButtonStyleHover
• Double-click on cxWebCheckBox1 and enter the following code:

cxWebMainMenu1.Horizontal := cxWebCheckBox1.Checked;

Running the app via F9 predictably shows the effect of clicking on the
check box control.

Use the menu system to go to either the Example1 or Example2 page.
Hit the browser's return button and you'll see the check box is still in its
checked or unchecked state as you last left it. This is an example of
maintaining state. This is handled for you automatically by EWF.

The Web Popup Menu and TcxWebLabel

Drop a TcxWebLabel (EWF Controls page) and a TcxWebPopupMenu (EWF Components page) onto the Home page of the EWF
application. Set the following properties:

• cxWebLabel1.Caption to 'Menu Style: One'
• cxWebLabel1.Styles.Default to cxWebHomeDataModule2.ButtonStyle
• cxWebLabel1.Styles.Hover to cxWebHomeDataModule2.ButtonStyleHover
• cxWebLabel1.PopupMenu to cxWebPopupMenu1
• cxWebPopupMenu1.Styles.Default to cxWebHomeDataModule2.ButtonStyle
• cxWebPopupMenu1.Styles.Hover to cxWebHomeDataModule2.ButtonStyleHover

Double-click cxWebPopupMenu1 to invoke the Item Editor and add four items as shown above.

In order to simplify the generic event handler for changing the menu style, set the Tag properties of the four
cxWebPopupMenuItems to 1, 2, 3 and 4 respectively.

EXPRESSWEB FRAMEWORK - INTRODUCTION 9

Hook the four items to a common event handler (multi-select the items in the Item Editor then double click on the OnClick event
in the Object Inspector). Rename the event handler to WebPopupMenu1ItemClick. Code the event as follows and then run the
application to check the effect.

procedure THome.WebPopupMenu1ItemClick(Sender: TObject);
begin
 case (Sender as TcxWebMenuItem).Tag of
 1: begin
 cxWebLabel1.Caption := 'Menu Style : One';
 cxWebMainMenu1.Styles.Default := cxWebHomeDataModule2.ButtonStyle;
 cxWebMainMenu1.Styles.Hover := cxWebHomeDataModule2.ButtonStyleHover;
 end;
 2: begin
 cxWebLabel1.Caption := 'Menu Style : Two';
 cxWebMainMenu1.Styles.Default := cxWebHomeDataModule2.TablePaging;
 cxWebMainMenu1.Styles.Hover := cxWebHomeDataModule2.TablePagingHover;
 end;
 3: begin
 cxWebLabel1.Caption := 'Menu Style : Three';
 cxWebMainMenu1.Styles.Default := cxWebHomeDataModule2.TableItems;
 cxWebMainMenu1.Styles.Hover := cxWebHomeDataModule2.TableItemsHover;
 end;
 4: begin
 cxWebLabel1.Caption := 'Menu Style : Four';
 cxWebMainMenu1.Styles.Default := cxWebHomeDataModule2.TableHeader;
 cxWebMainMenu1.Styles.Hover := cxWebHomeDataModule2.TableHeaderHover;
 end;
 end;

 cxWebLabel1.Styles.Default := cxWebMainMenu1.Styles.Default;
 cxWebLabel1.Styles.Hover := cxWebMainMenu1.Styles.Hover;
 cxWebPopupMenu1.Styles.Default := cxWebMainMenu1.Styles.Default;
 cxWebPopupMenu1.Styles.Hover := cxWebMainMenu1.Styles.Hover;
end;

At run-time, the menu will popup whenever the mouse is over the label. This is because
cxWebLabel1.PopupShowingType is set as the default action for stMouseOver. You can change this to stClick if desired.

Note: The menu dropdown is a client event, while clicking on one of the menu options generates a server refresh, the latter
requiring a round-trip to the server to re-create the page.

The Web DB DataSource

Using the application page Example1, drop a standard Delphi TTable (from the BDE page) and an EWF TcxWebDBDataSource
onto the form. (Note that the BDE is not thread-safe without a TSession component.)

Connect the TTable to the DBDEMOS alias and select the table biolife.db. Make the TTable active. Add persistent fields to the
TTable and set the cxWebDBDataSource.DataSet property to Table1. It is the cxWebDBDataSource that makes EWF data aware

EXPRESSWEB FRAMEWORK - INTRODUCTION 10

in this instance. There are two other datasources that could have been used: cxStdWebDataSource and cxWebDataSource and
there is often confusion over which should be used under any given circumstance. The guidelines are to start with the 'thinnest'
component that provides the least functionality and then use a progressively more functional component as required. In order:

• TcxWebDataSource (non data-aware. Use with in-memory data)
• If you require a connection to a data-aware component, then use TcxStdWebDataSource (data aware component. Use with

TDataset derivatives)
• If you intend to group or sort dataset data, then use TcxWebDBDataSource (data-aware with extended functions)

The Web DB Data Navigator and Web DB Grid

Add a cxWebDBNavigator and cxWebDBGrid (both on the 'EWF Data Controls' page in the VCL) to your Example1 page. Connect
the navigator and grid to the datasource using the DataBinding>DataSource property.

Right click on the grid and select 'Columns Editor' from the popup menu. Select the fields Category, Common Name and
Species Name.

Run the application and see the effect. Note that you can sort, group and edit data using these components.

Adjust some of the style properties. Recall that this page can utilize the StyleController we introduced earlier on in the exercise.
The following screenshot gives an example of what can be done. Also, try using some of the other data-aware controls provided
with EWF. They work in the same way as a standard Delphi application.

EXPRESSWEB FRAMEWORK - INTRODUCTION 11

Client Side HTML
Select the Example2 page and, using the Object Inspector, set the PositioningType property to cxptAbsolute.

The TcxHTMLLabelElement and TcxHTMLButtonElement

Add a TcxHTMLLabelElement and a TcxHTMLButtonElement (both available on the EWF HTML Elements page) to the form.

Select the HTML Label and it will appear like this:

This mode of selection allows you to move and resize the component. Select the HTML label again to enable editing by using the
WYSIWYG toolbars.

Select the HTML Label again and it will now look like this:

At this stage, use the WYSIWYG toolbar and set the text to 'Heading 1'. Select Italics, Bold, and, Underline and change the font's
color to red.

When done, examine the file EWFIntroExample2.html. The line referring to the label just amended is highlighted in the following
screenshot:

Try changing one of the values in this code. For example, change the color "red" to "blue". Note that the
label on the form does not change straight away. However, c l ick on the label and the new color wi l l
appear. Note also that there are no EWF meta-tags in use. This is because we are using HTML Elements,
which are d is t inct f rom EWF Elements (Components, Contro ls and Data Contro ls) . This fact is fur ther
indicated by the lack of the ewf f lag on the component. For more informat ion about HTML elements,
v is i t the Wor ld Wide Web Consort ium (W3C) at ht tp: / /www.w3.org/MarkUp/.

With the HTML Label selected, examine the Object Inspector. You will immediately notice that the properties are all
lowercase - whereas Delphi component properties are usually Propercase. This is another indication that we are
dealing with HTML elements.

EXPRESSWEB FRAMEWORK - INTRODUCTION 12

HTML Elements and their properties will be easily understood by those who have coded with (D)HTML before. This tutorial does
not cover such topics but there are many good books available on it.

The Style property expands to a very large range of sub-options. Many of those options can also be set using the WYSIWYG
toolbar.

Coding events using EWF HTML Elements is done by entering Javascript directly into the code. Select the code page
EWFIntroExample2.html. In there, you'll find a line similar to this:

<input style="LEFT: 264px; POSITION: absolute; TOP: 32px" type="button" value="Button">

(Note: Some parts are EWF meta tags that will be expanded at run-time but the remainder is pure HTML. Note also that this line
was wrapped for the purposes of this tutorial and will probably appear as a single line in your code)

Change the line so that it reads like this (by adding the highlighted part):

<input style="LEFT: 264px; POSITION: absolute; TOP: 32px" type="button" value="Button"
onclick=alert("oops")>

What we've done is to add some JavaScript to the HTML. Run the application. When you click the button on example page 2, you
should see a modal dialog pop up with the phrase 'oops' in it.

JavaScript is not covered in this tutorial but to get the best out of your EWF application you will require some knowledge of it. An
excellent reference book is Danny Goodman's "JavaScript Bible" (ISBN: 0-7645-3342-8)

When using JavaScript, you'll find the above example very limiting and you'll want the ability to be able to call JavaScript functions.
The following code snippet shows exactly how to do that. Although it performs the same action, it is easy to see how this could
be extended. The code that has been added to the original is highlighted:

<html>
 <head><title><%=Context.Page.Title%></title>
<meta content="MSHTML 6.00.2800.1400" name="GENERATOR"></head>
<script language="JavaScript">
<!-- Script Begin
 function MyButtonClick(event)
 {
 alert("oops");
 }
 // Script End --></script>
 <body>
 <ewf:Form id="<%=Form.Name%>" renderchildren="endRender">
<div style="LEFT: 175px; POSITION: absolute; TOP: 29px">
<h1><u>Label</u></h1></div>
<input style="LEFT: 264px; POSITION: absolute; TOP: 32px" type="button" value="Button"

onclick="MyButtonClick(event)">
 </ewf:form>
 </body>
</html>

EXPRESSWEB FRAMEWORK - INTRODUCTION 13

HTML Tables
At this stage, HTML tables have been used for positioning controls. This is done automatically as the default value for the form's
PositioningType is cxptGrid. What this means is that the components you place on a form have a table underlying them to
ensure (as far as possible) that the components remain in the same place when the form is reproduced at run-time (note that,
because of the disparity in available browsers, differences in presentation are to be expected).

HTML tables may also be added to the form just like any other component. Select the cxHTMLTableElement from the EWF
HTML Elements page of the VCL and place it on the Example2 page.

Stretch the table over the width of the page. Place the cursor in the top left cell of the table. While holding down the Shift key,
press the right arrow key once. This selects the adjacent cell as well (note that there is no visual feedback given on the form)
and the table cell merge button on the Example2 form becomes available. Click this button to merge the two cells. With the
cursor positioned in the merged cells, type in some text. Use the text formatting toolbar on the Example2 form to format the text
you just entered.

It would be convenient to be able to place components directly into the table's cells, but if you try it, you'll see that the controls
seem to float above the grid and will render themselves strangely at run-time dependent upon your browser. To gain the
required functionality, set the page's PositioningType to cxptFlow. Now, select the button on the page and drag and drop it into
the top right-hand cell of the table. Repeat the exercise with the label on the form and drop it in the lower left table cell (Note:
The only way to select the text control is to select all of the text on it first and then drag it). Check the result using HTML Preview
and then run the application to see how your browser renders the result.

Next, select a cxHTMLImageElement control from the EWF HTML Elements page. Attempt to place it in the lower right cell
of the table. Note that the control will move and appear after the table. You will need to use drag and drop to position it
correctly. Do this and then set the src property of the cxHTMLImageElement to point to a graphic. This property's default value
is set to the location of your EWF application. For this tutorial, copy a graphic into that location and append the graphics name
to the property. The tutorial uses a standard, Borland supplied, splash graphic.

Note that the HTML table will resize itself, its rows and columns, as items are manipulated within it. When you
have finished your design work, use the table controls to set the table as you wish it to appear at run-time. Note,
however, that the only way to change a table's row and column sizes is by editing the HTML.

Finally, return the form's PositioningType property to cxptAbsolute. Note that the formatting just set for the table is retained.

EXPRESSWEB FRAMEWORK - INTRODUCTION 14

Server Side Scripting
Throughout the tutorial so far, mention has been made of EWF meta tags and scripting. We have also covered EWF
components and HTML components. It is also possible to produce pages by writing all the script and meta tags yourself. The
ability of EWF to access Delphi objects and properties via scripts at run-time is hugely useful in this regard.

Add another WebPageModule to the application and call it EWFIntroExample3 (change the form's name to Example3). Add a
TTable component from the BDE page of the VCL and set the properties to hook this table to the DBDEMOS BDE alias that is
supplied by default with Delphi installs (select the events.db table from there).

Open the source code file EWFIntroExample3.html and rewrite it to match the following:

<html>
 <head>
 <title><%=Context.Page.Title%></title>
 <meta content="MSHTML 6.00.2800.1400" name="GENERATOR">
 </head>
 <body>
 <ewf:Form id="<%=Form.Name%>" renderchildren="endRender">
 <%while (!Table1.EOF) { %>

<TABLE cellSpacing=0 cellPadding=2 border=1>
 <TR>
 <TD width="250" colSpan="2"><%=Table1.FindField("event_name").DisplayText %></TD>
 <TD width="400" rowSpan="3"><%=Table1.FindField("event_description").AsString %></TD>
 <TD width="200" rowSpan="3"><Image src=<%=Form.CurrentImageSource%>></TD>
 </TR>
 <TR>
 <TD width=100><%= Table1.FindField("event_date").DisplayText %></TD>
 <TD width=150><%= Table1.FindField("event_time").DisplayText %></TD>
 </TR>
 <TR>
 <TD width="205" colSpan="2"><%= Table1.FindField("ticket_price").DisplayText %></TD>
 </TR>
 </TABLE>
 <% Table1.Next; } %>
 </ewf:form>
 </body>
</html>

The code should be fairly simple to follow but the thing to note is that we're utilizing the properties and methods of Table1 (the
BDE TTable component) in our HTML code. Before being able to use this functionality, you must add the unit cxScriptDBImpl to
the implementation uses clause of the EWFIntroExample3.pas source code file. By default, all published component properties
are available via script, however it is necessary to add the cxScriptDBImpl unit to the uses clause to make public properties and
methods available via script. While in this unit, code to open and close the TTable component in the forms OnActivate and
OnDeactivate events respectively. Finally, write a function to return an image as a URL for use on the form. The relevant parts for
the pas unit follow:

unit EWFIntroExample3;

type
 TExample3 = class(TcxWebPageModule)
 Table1: TTable;
 procedure cxWebPageModuleActivate(Sender: TObject);
 procedure cxWebPageModuleDeactivate(Sender: TObject);
 private
 function GetCurrentImageSource: string;
 published
 property CurrentImageSource: string read GetCurrentImageSource;
 end;

implementation

{$R *.DFM} {*.html}

uses
 WebReq, WebCntxt, cxWebModFact, cxWebScript, Variants, cxWebDataUtils, Graphics, cxScriptDBImpl;

function Example3: TExample3;
begin
 Result := TExample3(WebContext.FindModuleClass(TExample3));
end;

EXPRESSWEB FRAMEWORK - INTRODUCTION 15

procedure TExample3.cxWebPageModuleActivate(Sender: TObject);
begin
 Table1.Open;
end;

procedure TExample3.cxWebPageModuleDeactivate(Sender: TObject);
begin
 Table1.Close;
end;

function TExample3.GetCurrentImageSource: string;
var
 AWidth, AHeight: integer;
begin
 LoadImage(Table1.FindField('Event_Photo').Value, TBitmap, Result, AWidth, AHeight);
end;

Coded successfully, the final page should be rendered to the browser as follows:

To access your newly added page, either enter the URL directly at run-time when testing your app, or add a link to it in the menu
system as discussed earlier.

EXPRESSWEB FRAMEWORK - INTRODUCTION 16

Using existing HTML as a Template
For a tool like EWF to be truly useful, there has to be a simple way of importing an existing web page to use as an html template
and that is what we are going to show you next.

The page chosen as an example is the EWF controls page on our website: http://www.devexpress.com/?section=/products/vcl/
ewf/Components, which is sufficiently complex to prove that EWF can handle real pages and not just simple examples.

To import this page into your Delphi project (it is assumed that a new project named EWFImport has already been created) you
should first save the page to the project's folder. Note that when saving complete web pages, IE5 saves all the associated
images and stylesheets in a sub-directory:

Having saved the web page, we can now turn our attention to the home page of our newly created EWF application (EWFImport).

EXPRESSWEB FRAMEWORK - INTRODUCTION 17

The home page's settings as represented by the cxWebPageModule3 form should look like the screenshots below:

At this point, Unit3.html looks like this:

Now comes the interesting bit. We replace the contents of unit3.html by pasting in the contents of the product_catalog.htm file. An
alternative is to use an external file manager and copy soapbox.html to unit3.html.

Next, we examined the contents of the unit3.htm file and the only problem relates to the highlighted lines below:
The highlighted line is currently referencing an external style sheet by a relative address. Just for the purpose of design time
style visualization, we merely change the root so that it represents the absolute path to the style sheet file:

Having saved the above changes, we can now turn our attention to the form designer which should now look like the
image below:

EXPRESSWEB FRAMEWORK - INTRODUCTION 18

You can now modify and format the web page contents using the form designer's toolbars. The image below demonstrates how
you can format the first paragraph of text.

Still, this is not all the form designer offers you. In exactly the same way for the imported page as when you create your
own page using EWF HTML Elements, you can select elements, rearrange them using drag and drop and modify their
attributes via the Object Inspector.

EXPRESSWEB FRAMEWORK - INTRODUCTION 19

The following screenshot shows how to access the attributes of the image element.

There are five 'RAD' ways of modifying a page:
• dropping an EWF component on it (i.e. basically server side)
• dropping an EWF HTML Element on it (adds an html tag to the template)
• move text or controls (component, element or existing html tag) by drag/drop
• modify selected text by overtype or by means of the editing toolbars
• modify controls (previously dropped or template html tag) via the Object Inspector

In addition to the above, you also have complete freedom to modify the html template manually. You can create or copy controls
there and the changes you make will be seen as soon as
you switch back to Form mode. We mentioned earlier that one of our targets was to let you work as you wish. The
synchronization we provide allows you to pass the html file to a
graphic designer before, in the middle and after other work is done on the page.

In the Designer paper (which is available on our web site), a similar example to the one above is taken a bit further by
showing how we modified the page to add another item to the left hand side menu followed by the creation of another
page with a similar style.

Well, that is all for this introductory tutorial. As you can imagine there is much more to show you than we can manage here. Have
a look at our other papers for more details. In particular, look out for the examples which use all the various components and
HTML Elements we supply.

EXPRESSWEB FRAMEWORK - INTRODUCTION 20

Appendix
This appendix will consider the points related to debugging and deploying web applications created using EWF. Note that
deploying an application (transferring the created and tested modules to a real web application) is only needed when the
application type doesn't support debugging. This is so for all application types but ISAPI applications. When developing an ISAPI
application you can make use of the ExpressWeb Debugger. Read the 'Debugging ISAPI Applications with WWSDebug'
document for details on setting up the tool. This document can be found in the WWSDebug folder of your EWF installation.

When developing applications other than ISAPI, you will have to use the Web App Debugger tool integrated into the Delphi
environment. To use it, you need to create the 'Web App Debugger Executable' project. The first section of the appendix describes
how to work with such projects. After the application is built and tested, you need to create a real web application and transfer all
the created modules to it. This process is described in the second section of the appendix.

Using the Web App Debugger

EWF has encapsulated the steps required to run via the Web App Debugger (WAD) so that you merely have to press F9, or select
Run | Run from the IDE menu just the same as if
you are running a standard Win32 application.

Take a look at the source of an EWF application running under WAD:

If we remove the two highlighted lines, this functionality is removed and we revert to the classical multi-step WAD invocation. But
as can be seen there are no reasons for wanting to do that.

However, there are a couple of things worth mentioning here. First, for scripts and images to be available, their paths do have to
be available to WAD. This is achieved by switching
to the WAD application (its main window is opened automatically when you run the EWF application or can be invoked at design-
time using the Tools | Web App Debugger menu item):

EXPRESSWEB FRAMEWORK - INTRODUCTION 21

Deployment

After you have created and tested your web application, you will obviously want to deploy it to a real web server. To do this simply
create a new application of the appropriate type (Apache, CGI, etc) and add all the units that you have worked on to the new
project. Compile, and deploy appropriately for your target web server.

It is a good idea to create a project group that contains a different project for each type of deployment that you may make with
your application: ISAPI, CGI, Apache, etc.

Below is a brief example of how to do this. Consider the files used by the tutorial:

The EWFIntroMain form shown above is specifically there to support the Web App Debugger, but all the others are needed by the
new version of our application.

Create a new EWF application via File | New | Other | EWF page and choose the 'CGI Stand-alone executable' project type. When
the application is created, remove all automatically created modules from it:

Rename the project to EWFIntroCGI and save it. After that, reopen the EWFIntro project group and add the EWFIntroCGI project to
it. Then, simply move all the files needed using drag and drop. In the screenshot below, EWFIntroData has already been copied
and the drag and drop of EWFIntroHome is almost complete.

Note: only one copy of each file actually exists. Further development can take place via EWFIntro and then a quick compile of
EWFIntroCGI is all that is necessary when you are ready to deploy.

Once you have compiled the CGI application, you can upload it to your local web server. For details on how to do this, refer to the
Deployment section of the EWF help file.

	Contents
	Purpose of this Article
	Introduction
	EWF Components
	The Menu Control
	The Web Style Controller
	The Web Check Box
	The Web Popup Menu and TcxWebLabel
	The Web DB DataSource
	The Web DB Data Navigator and Web DB Grid

	Client Side HTML
	The TcxHTMLLabelElement and TcxHTMLButtonElement

	HTML Tables
	Server Side Scripting
	Using existing HTML as a Template
	Appendix
	Using the Web App Debugger
	Deployment

